Skip to Content

Category Archives: Air Sterilisation

Microorganisms and Microbes

bacteriaA majority of this planets living material is made up of microorganisms and microbes. Microorganisms, also known as microbes, are microscopic, single celled organisms. Made from either a single cell (unicellular), cell clusters or multiple cells, these relatively complex organisms help the earths ecosystem to function.

Each type of microorganism is unique in the way it moves and reproduces. Most microorganisms are essential to the breakdown of organic materials (decomposition) and producing the planet’s oxygen. They are also known for keeping the health of humans and animals.

There are 7 types of microorganisms and microbes:

1. Bacteria: Bacteria are unicellular and exist in 4 shapes: rod shape, sphere, spiral and curved. They can exist in the presence of oxygen or without. Bacteria make their own food by using the energy of light from the sun as well as from chemical reactions or consuming other organisms, such as decaying life.


2. Archea:

Archaea can survive in the harshest of environments such as those that are incredibly salty, in extreme cold temperatures, extreme hot temperatures and some can produce methane. They absorb sunlight with their membrane pigment, which then reacts with light to produce an energy molecule known as adenosine triphosphate. They also use energy sources such as like hydrogen gas, carbon dioxide, and sulphur.

3. Protozoa: Protozoa are quite complex unicellular who have developed specialised structures to gain nourishment. They make up the largest group of organisms on the planet in terms of biomass, diversity and sheer numbers. They use various methods to obtain locomotion, with some even producing tiny hairs to obtain movement.


4. Algae:

Algae are also known as cyanobacteria and are multicellular. They obtain nourishment via photosynthesis and live in many environments such as water and sewerage plants, rocks and also in damp soil. They product oxygen, which is used by other organisms. It is thought that these bacterial are where todays land based plants have their origins.

5. Fungi:

Or mushrooms, moulds and yeasts are multicellular. They get their nutrients from absorbing organic material decomposing in their environment. They also form harmful relationships with their hosts, forming tubes to help absorb more material. They release spores to reproduce.

6. Viruses:

Viruses are not considered to be living, as they are non-cellular and are surrounded by a coat of protein. They can only reproduce outside a host cell and are unable to metabolise on their own. Viruses usually infest prokaryotic and eukaryotic cells which causes disease.


(multi cellular animals known as helminths): parasites, which are known as helminths are multicellular and eukaryotic and consist of worms that are either round or flat. They are usually large enough to be seen without a microscope once they have matured.


Bchytridiomycota fungusacteria, Fungus, Yeast, Mould & Mildew Spores, Virus and Protozoa are removed by our  Bio-Oxygen Process.

microorganisms and microbes can be present in many environments. Oxygen Clusters contain 1 – 4 extra electrons and when an organism is engulfed by Clusters of Oxygen then the body of the organism constitutes the Earth Point or lower potential against which all the surrounding Oxygen Clusters discharge their surplus electrons in a rapid short circuit discharge, same as a capacitor discharges its electrons against a lower potential. The organism is continually bombarded with electrons from all sides and when the surplus electrons of one Oxygen Cluster are exhausted another cluster takes its place until the organism eventually dies from hundreds or thousands of electron shots. Organisms can develop immunity to disinfectants but there is no immunity to electron shots.

Organisms with Soft Cell Wall

Most organisms have a soft cell wall. The organism is continually bombarded with electron shots. The electron shots puncture the soft cell wall and, as a result, the organism dies. Organisms with a soft cell wall are the easiest organisms to kill. The anti-biotic resistant MRSA organism, Staphylococcus Aureus, has a soft cell wall and is one of the easiest organisms to kill with the Bio-Oxygen Process.

Organisms with Tough Cell Wall

Spores have a tough cell wall. In order to kill Spores, they would have to be boiled in a pressure cooker for 2 hours at 120 C. Boiling at 100C for hours does not kill Spores. Spores are continually bombarded with electron shots until the cell wall is punctured or cracked and, as a result, the Spore dies.

Organisms with Hard Cell

Wall Some organisms have a Hard Cell Wall. The hard cell wall is continually bombarded with electron shots until the cell wall is punctured or Bacteria is a microorganismcracked and, as a result, the organism dies.

Organisms with Lipid Envelope

Some organisms have a lipid envelope. Lipids are fats and are very easily oxidised and once the lipid envelope is oxidised, the organism is exposed and dies.

Anaerobic Bacteria

Anaerobic Bacteria live in an environment devoid of oxygen and to anaerobic bacteria even ordinary oxygen is toxic. When anaerobic bacteria is engulfed by clusters of oxygen composed of 100% pure oxygen and is bombarded with electrons shots, it quickly dies.

Inside a bacteria microorganismAerobic Bacteria

Aerobic Bacteria live in normal air containing 21% oxygen, however, when aerobic bacteria is engulfed in clusters of oxygen composed of 100% pure oxygen and is continually bombarded with electron shots, it quickly dies.

How long does it take to kill a Micro-organism?

(A) The speed with which an organism is killed depends mainly on the size of the organism. The larger the organism, obviously the more electron shots it can take and the smaller the organism, the less electron shots it can take. Viruses are the smallest organisms and can only take a few electron shots. Most other organisms like Bacteria, Fungus, Yeast, Mould, Mildew etc are 100 – 1000 times larger than Viruses and therefore can take much more electron shots. On a time scale, Viruses are killed in seconds whilst all other organisms are killed in minutes.

(B) The length of time also depends on whether the organism has a soft, tough or hard cell wall because it takes time for the electron shots to puncture or crack a tough or hard cell wall. Don’t forget that it takes minimum 2 hours in a pressure cooker at 120 C to kill spores and it can take just as long for the Oxygen Clusters to kill spores at ambient temperature, without boiling.

microorganisms and microbes are essential for the health of the planet, but can also become a nuisance. The Bio-Oxygen process can control these microorganisms and microbes to keep the air and environment healthy.

0 0 Continue Reading →

Air Sterilisation

Using effective air sterilisation techniques is important in the prevention of infections. This is especially true in health care settings. There are a number of articles published which document improper air sterilisation. It is imperative to use appropriate techniques which sterilise the air in order to prevent the spread of disease.

Air Sterilisation for Hospitals and Healthcare Establishments

Inside a healthcare establishment, the air carries significant amounts of particulate matter, spores, virus, bacteria as well as volatile organic compounds. The volatile organic compounds are emitted by the furniture finish as well as the use of some cleaning solutions. Dust, dander and other pollen can be transported into the building on the clothes and skin of workers and patients.

Fumes and gasses can also be found contaminating inside air, which can easily infect patients after being transferred by the hands of humans.

Traditionally, hospitals have a raised risk of infection to those whose immunity has been compromised. This is due to bacteria and viruses which are airborne remaining active through the HVAC system. This can lead to a widespread outbreak throughout the entire building.

0 0 Continue Reading →